Balancing environmental needs with respiratory healthcare
What is the interconnection between climate action and respiratory health?
Stelios: Chronic respiratory diseases are prime examples of the growing health impacts of climate change. The climate crisis is likely to cause 250,000 additional deaths per year globally between 2030 and 2050.1 Poor air quality and extreme weather conditions pose great risks to people living with asthma and chronic obstructive pulmonary disease (COPD) and increase the number of people developing these diseases.2,3,4 Health systems need to care for these patients, but in doing so they generate greenhouse gases, contributing to the problem.5
How is respiratory care generating greenhouse gas emissions?
Christer: All medicines and healthcare interactions have a carbon footprint.5 With chronic respiratory diseases like asthma and COPD, the carbon footprint stems from medicines use, doctor visits, and hospital care.6,7,8 Because of this, we usually see that the better a patient’s respiratory disease is managed, the lower the associated carbon footprint of care.6,7,8
Why is the ongoing revision of the F-gas regulation relevant to respiratory care?
Christer: Updates to the F-gas regulation could affect a key element in the wider carbon footprint of respiratory care – the use of inhaled medicines. Most people with asthma or COPD rely on pressurised metered-dose inhalers (pMDIs) to manage their disease.9,10 pMDIs are important therapeutic options that can improve quality of life and save lives.11 These inhaled medicines use a type of medical-grade F-gas to propel the medicine into a patient’s lungs.12
Stelios: Overall, the EU’s revised F-gas regulation will drive a significant reduction in the use of F-gases, which are employed across many sectors, including refrigeration, air conditioning and heat pump industries, and carry global warming effects many times greater than carbon dioxide.13 In the case of healthcare, the medical use of F-gases currently accounts for less than 0.1% of globally reported greenhouse gas emissions.14 The healthcare sector is already working to transition the propellants used in pMDIs to low global warming potential propellants, in order to balance environmental sustainability with population health needs.
How can we balance environmental sustainability with these respiratory care needs at EU level?
Stelios: As we work to achieve the EU’s climate goals, it’s crucial this is done in a way that maintains or improves people’s quality of life and supports a healthy population. Through collaboration between policymakers, patient organisations, healthcare professionals, industry, and other relevant stakeholders, we can create healthier environments without compromising the needs of millions of people with respiratory diseases.
As l mentioned earlier, a key element of this is the transition of existing inhaled medicines to the next generation of environmentally friendly propellants. While this is exciting, it requires continued investment in research and development, and the biopharmaceutical industry has stated a full transition is likely to take until at least 2030.15 During this period, we must guarantee that any change in the treatment of life-threatening respiratory conditions will ensure equivalent or better care for patients in the EU and beyond.
How can the respiratory community support the EU’s climate goals?
Christer: While new propellants with lower global warming potential undergo clinical and regulatory requirements, it remains important that patients have continued access to their inhaler of choice for optimal disease management and to avoid increasing the carbon footprint of care.
Switching inhaled medicines without patient consent or clinical assessment can result in poor health outcomes for respiratory patients.16-18 Actions can also be taken to reduce inappropriate use of inhaled medicines by implementing the latest evidence-based treatment guidelines.
In the long run, our health and climate goals are aligned, as respiratory patients with well-controlled diseases usually have smaller carbon footprints than those with poorly controlled diseases.8,19
Click here to learn more about climate change and respiratory diseases
References
Organised and funded by AstraZeneca
Z4-51580 | Date of preparation: February 2023
link